A Rademacher-Type Formula for

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Rademacher Type Formula for Partitions and Overpartitions

A Rademacher-type convergent series formula which generalizes the Hardy-Ramanujan-Rademacher formula for the number of partitions of n and the Zuckerman formula for the Fourier coefficients of θ4(0 | τ)−1 is presented. 1. Background 1.1. Partitions. A partition of an integer n is a representation of n as a sum of positive integers, where the order of the summands (called parts) is considered ir...

متن کامل

A Hardy-Ramanujan-Rademacher-type formula for (r, s)-regular partitions

Let pr,s(n) denote the number of partitions of a positive integer n into parts containing no multiples of r or s, where r > 1 and s > 1 are square-free, relatively prime integers. We use classical methods to derive a Hardy-Ramanujan-Rademacher-type infinite series for pr,s(n).

متن کامل

a cauchy-schwarz type inequality for fuzzy integrals

نامساوی کوشی-شوارتز در حالت کلاسیک در فضای اندازه فازی برقرار نمی باشد اما با اعمال شرط هایی در مسئله مانند یکنوا بودن توابع و قرار گرفتن در بازه صفر ویک می توان دو نوع نامساوی کوشی-شوارتز را در فضای اندازه فازی اثبات نمود.

15 صفحه اول

Efficient implementation of the Hardy{--}Ramanujan{--}Rademacher formula

We describe how the Hardy–Ramanujan–Rademacher formula can be implemented to allow the partition function p(n) to be computed with softly optimal complexity O(n) and very little overhead. A new implementation based on these techniques achieves speedups in excess of a factor 500 over previously published software and has been used by the author to calculate p(10), an exponent twice as large as i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Mathematics and Mathematical Sciences

سال: 2011

ISSN: 0161-1712,1687-0425

DOI: 10.1155/2011/976723